Summingbird: A Framework for Integrating Batch and Online MapReduce Computations
نویسندگان
چکیده
Summingbird is an open-source domain-specific language implemented in Scala and designed to integrate online and batch MapReduce computations in a single framework. Summingbird programs are written using dataflow abstractions such as sources, sinks, and stores, and can run on different execution platforms: Hadoop for batch processing (via Scalding/Cascading) and Storm for online processing. Different execution modes require different bindings for the dataflow abstractions (e.g., HDFS files or message queues for the source) but do not require any changes to the program logic. Furthermore, Summingbird can operate in a hybrid processing mode that transparently integrates batch and online results to efficiently generate up-to-date aggregations over long time spans. The language was designed to improve developer productivity and address pain points in building analytics solutions at Twitter where often, the same code needs to be written twice (once for batch processing and again for online processing) and indefinitely maintained in parallel. Our key insight is that certain algebraic structures provide the theoretical foundation for integrating batch and online processing in a seamless fashion. This means that Summingbird imposes constraints on the types of aggregations that can be performed, although in practice we have not found these constraints to be overly restrictive for a broad range of analytics tasks at Twitter.
منابع مشابه
MapReduce Online
MapReduce is a popular framework for data-intensive distributed computing of batch jobs. To simplify fault tolerance, many implementations of MapReduce materialize the entire output of each map and reduce task before it can be consumed. In this paper, we propose a modified MapReduce architecture that allows data to be pipelined between operators. This extends the MapReduce programming model bey...
متن کاملPig Squeal: Bridging Batch and Stream Processing Using Incremental Updates
Title of dissertation: Pig Squeal: Bridging Batch and Stream Processing Using Incremental Updates James Holmes Lampton, Jr., Doctor of Philosophy, 2015 Dissertation directed by: Professor Ashok Agrawala Department of Computer Science As developers shift from batch MapReduce to stream processing for better latency, they are faced with the dilemma of changing tools and maintaining multiple code b...
متن کاملEfficient Batch Parallel Online Sequential Extreme Learning Machine Algorithm Based on MapReduce
With the development of technology and the widespread use of machine learning, more and more models need to be trained to mine useful knowledge from large scale data. It has become a challenging problem to train multiple models accurately and efficiently so as to make full use of limited computing resources. As one of ELM variants, online sequential extreme learning machine (OS-ELM) provides a ...
متن کاملShareability and Locality Aware Scheduling Algorithm in Hadoop for Mobile Cloud Computing
Using different scheduling algorithms can affect the performance of mobile cloud computing using Hadoop MapReduce framework. In Hadoop MapReduce framework, the default scheduling algorithm is First-In-First-Out (FIFO). However, the FIFO scheduler simply schedules task according to its arrival time and does not consider any other factors that may have great impact on system performance. As a res...
متن کاملHigh frequency batch-oriented computations over large sliding time windows
Today’s business workflows are very likely to include batch computations that periodically analyze subsets of data relative to specific time ranges in order to provide strategic information for stakeholders and other interested parties. The frequency of these computations directly impacts on how much updated such information can be, which provides an effective measure of their usefulness. This ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PVLDB
دوره 7 شماره
صفحات -
تاریخ انتشار 2014